skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heimsath, Arjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Deep exposures of soil profiles on Miocene or Mio-Pliocene alluvial deposits were studied along a 500 km N-S transect in the Atacama Desert. These ancient deposits, with excellent surface preservation, now stand many meters above a broad incised Plio-Pleistocene alluvial terrain. Total geochemical analyses and mass balance calculations allowed the establishment of elemental gains, losses, and redistribution in the soils. From north to south (presently hyperarid to arid), the ancient soils reveal an increase in losses of rock-forming elements (Si, Al, Fe, K, Mg). Additionally, rare earth elements (REE) show losses with increasing southerly latitude and systematic patterns with soil depth. Some REEs appear to be unique chemical tracers of exogenous dust and aerosol additions to the soils. The removal of major elements and REEs is impossible in the present climate (one of salt and dust accumulation), revealing that for a significant period following the deposition of the alluvium, soils were exposed to rainfall, chemical weathering, and mass loss—with a geographical pattern that mirrors the present rainfall gradient in the region. Following the cessation of weathering, the pre-weathered soils have undergone enormous dust and salt accumulations, with the rates and types of salt accumulation consistent with latitude: (1) carbonate in the south and (2) sulfate, chlorides, and nitrates to the north. The quantity, and apparent rates, of salt accumulation have a strong latitudinal trend. Isotopes of sulfate have predictable depth patterns based on isotope fractionation via vertical reaction and transport. The relict hyperarid soils are geochemically similar to buried Miocene soils (ca. 10–9 Ma) in the region, but they differ from older Miocene soils, which formed in more humid conditions. The overall soil record for the Atacama Desert appears to be the product of changes in Pacific Ocean sea surface temperatures over time, and resulting changes in rainfall. The mid-Miocene was relatively humid based on buried soil chemistry and evidence of fluvial activity. The mid to late Miocene cooling (ca. 10–5.5 Ma) appears to have aridified the region based on paleosol soil chemistry. Pliocene to earliest Pleistocene conditions caused weathering of the relict soils examined here, and regional fluvial activity. Since the earliest Pleistocene, the region has largely experienced the accumulation of salts and, except for smaller scale oscillations (glacial-interglacial), has experienced protracted hyperaridity. 
    more » « less
  2. Abstract We present 17 new 10Be erosion rates from southern Peru sampled across an extreme orographic rainfall gradient. Using a rainfall-weighted variant of the normalized channel steepness index, ksnQ, we show that channel steepness values, and thus topography, are adjusted to spatially varying rainfall. Rocks with similar physical characteristics define distinct relationships between ksnQ and erosion rate (E), suggesting ksnQ is also resolving lithologic variations in erodibility. However, substantial uncertainty exists in parameters describing these relationships. By combining our new data with 38 published erosion rates from Peru and Bolivia, we collapse the range of compatible parameter values and resolve robust, nonlinear ksnQ–E relationships suggestive of important influences of erosional thresholds, rock properties, sediment characteristics, and temporal runoff variability. In contrast, neither climatic nor lithologic effects are clear using the traditional channel steepness metric, ksn. Our results highlight that accounting for spatial rainfall variations is essential for disentangling the multiple influences of climate, lithology, and tectonics common in mountain landscapes, which is a necessary first step toward greater understanding of how these landscapes evolve. 
    more » « less
  3. This dataset contains polygon shapefiles of watersheds draining detrital 10Be erosion rate samples from the San Gabriel Mountains, California (USA), with the naming format “mask_SampleID.shp”. This dataset is a companion to: DiBiase, R. A., Neely, A. B., Whipple, K. X, Heimsath, A. M., and Niemi, N. A. (2023), Hillslope morphology drives variability of detrital 10Be erosion rates in steep landscapes, Geophysical Research Letters, 50, e2023GL104392. https://doi.org/10.1029/2023GL104392 Full information for samples is described in: DiBiase, R. A., Neely, A. B., Whipple, K. X., Heimsath, A. M., Niemi, N. A., 2023. Compilation of detrital 10Be erosion rate data, San Gabriel Mountains, CA, USA, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/112928. Accessed 2023-08-08. 
    more » « less
  4. Accounting for climate unlocks potential to disentangle primary factors controlling the evolution of mountain topography. 
    more » « less
  5. This dataset of detrital cosmogenic 10Be erosion rates from stream sands includes new and previously published measurements, compiled as part of DiBiase et al. (2023). Sample location information has been updated from original publications using field notes, pictures, and new lidar topography to align with correct stream network position. All erosion rates have been recalculated using updated in situ 10Be production rate estimates in quartz, as described in DiBiase et al. (2023). In addition to 10Be data, this dataset also includes catchment-scale topographic, climate, and landslide impact metrics, as described in DiBiase et al. (2023). 
    more » « less
  6. Abstract The connection between topography and erosion rate is central to understanding landscape evolution and sediment hazards. However, investigation of this relationship in steep landscapes has been limited due to expectations of: (a) decoupling between erosion rate and “threshold” hillslope morphology; and (b) bias in detrital cosmogenic nuclide erosion rates due to deep‐seated landslides. Here we compile 120 new and published10Be erosion rates from catchments in the San Gabriel Mountains, California, and show that hillslope morphology and erosion rate are coupled for slopes approaching 50° due to progressive exposure of bare bedrock with increasing erosion rate. We find no evidence for drainage area dependence in10Be erosion rates in catchments as small as 0.09 km2, and we show that landslide deposits influence erosion rate estimates mainly by adding scatter. Our results highlight the potential and importance of sampling small catchments to better understand steep hillslope processes. 
    more » « less
  7. Abstract Prior numerical modeling work has suggested that incision into sub‐horizontal layered stratigraphy with variable erodibility induces non‐uniform erosion rates even if base‐level fall is steady and sustained. Erosion rates of cliff bands formed in the stronger rocks in a stratigraphic sequence can greatly exceed the rate of base‐level fall. Where quartz in downstream sediment is sourced primarily from the stronger, cliff‐forming units, erosion rates estimated from concentrations of cosmogenic beryllium‐10 (10Be) in detrital sediment will reflect the locally high erosion rates in retreating cliff bands. We derive theoretical relationships for threshold hillslopes and channels described by the stream‐power incision model as a quantitative guide to the potential magnitude of this amplification of10Be‐derived erosion rates above the rate of base‐level fall. Our analyses predict that the degree of erosion rate amplification is a function of bedding dip and either the ratio of rock erodibility in alternating strong and weak layers in the channel network, or the ratio of cliff to intervening‐slope gradient on threshold hillslopes. We test our predictions in the cliff‐and‐bench landscape of the Grand Staircase in southern Utah, USA. We show that detrital cosmogenic erosion rates in this landscape are significantly higher (median 300 m/Ma) than the base‐level fall rate (~75 m/Ma) determined from the incision rate of a trunk stream into a ~0.6 Ma basalt flow emplaced along a 16 km reach of the channel. We infer a 3–6‐fold range in rock strength from near‐surface P‐wave velocity measurements. The approximately four‐fold difference between the median10Be‐derived erosion rate and the long‐term rate of base‐level fall is consistent with our model and the observation that the stronger, cliff‐forming lithologies in this landscape are the primary source of quartz in detrital sediments. © 2020 John Wiley & Sons, Ltd. 
    more » « less